#### **ADC Measurement**

## <u>Outline</u>

- Introduction of ADC
- Static testing
- Dynamic testing
- Measurement example
- Reference

## Introduction of ADC

- Conversion of signal from analog to digital
- Ideal 2-bit ADC
  - Input-output transfer curve



Quantization error



- Non-ideal 2-bit ADC
  - ◆ Input-output transfer curve



Quantization error



## <u>Outline</u>

- Introduction of ADC
- Static testing
  - Static errors
  - Histogram testing
    - Ramp signal
    - Sinusoidal signal
      - $\circ$  A<sub>sin</sub> Fitting Methods
      - $\circ\,$  Summary of  $A_{sin}$  Fitting Methods
      - Normalization of transitions
      - Consideration of offset voltage
      - Illustration of relationship between threshold voltage and output code
      - The Influence of input amplitude to histogram
      - $\circ\,$  Verification of MATLAB code for static testing
  - Aperture Uncertainty Measurement
  - Limitation of number of sampling points

# Outline(Cont.)

- Dynamic testing
- Measurement example
- Reference

## Static Testing

- Introduction of static errors with a 3-bit ADC
  - ♦ Offset
  - Gain error
  - Differential nonlinearity (DNL)
    - The difference between an actual step width and the ideal value of 1 LSB
    - > DNL(k) =  $\frac{\text{code width}(k) 1\text{LSB}}{1\text{LSB}}$ , k:output code



#### DNL<-1?

• DNL is defined as:

$$DNL(k) = \frac{code width(k) - 1LSB}{1LSB}$$

- $\rightarrow$  DNL <-1 if and only if code width <0
- Transfer curve of DNL <-1 case[8]</li>



At  $A_{IN^*}$  the digital code can be one of three possible values. When the input voltage is swept, Code 10 will be missing.

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

#### Measurement of DNL <-1

- Measurement detecting transition points[9]
  - LED display test
  - Integrating servo-loop test
  - Computer controlled servo-loop test
- More than one output possibility with same input



#### Combined Effect of Code transition Noise and DNL



- "No missing codes" can be defined as a combination of transition noise and DNL which guarantees some level (perhaps 0.2 LSB) of noise-free code for all codes.
- Within large noise, the manufacturer must define "noise levels" and "resolution" in some other way. Which method is used is less important, but the data sheet should contain a clear definition of the method used and the performance to be expected[10]

### Histogram Testing

#### • Features

- Averaging effect of noise and hysteresis
  - $\rightarrow$  Suitable for very high resolution or wide bandwidth sampling ADCs
- Monotonic assumption

 $\rightarrow$  Not accurate while testing non-monotonic ADCs

- Testing steps
  - Applying input signal (e.g. ramp wave, sinusoidal wave) with known probability density function (PDF)
  - Measurement of output PDF
  - Using histogram to calculate DNL and INL
- → Widely used in modern static testing

## Histogram Testing with Ramp Signal

 A linear triangular waveform which slightly exceeds both ends of the ADC range is usually used for testing



Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

郭泰豪, Analog IC Design, 2023

# Histogram Testing with Ramp Signal (Cont.)

- DNL calculation
  - Removing the histogram results of min. and max. output codes
  - Normalizing histogram results to mean value

 $\Rightarrow h_{normal}(i) = \frac{h(i)}{mean(h(i))}$ 

- Subtracting 1 from the normalized histogram to get DNL(i)  $\Rightarrow DNL(i) = h_{normal}(i) - 1$
- INL calculation

The formula of i-th INL is  $INL(i) = \sum_{k=1}^{i-1} DNL(k)$  (end-point)



 Disadvantage of histogram testing with ramp signal Hard to filter the out-of-band noise because triangle wave is composed by many different frequencies

$$\Rightarrow \text{ Ideal triangular wave: } x_{triangle}(t) = \frac{8}{\pi^2} (\sin(\omega t) - \frac{1}{9} \sin(3\omega t) + \frac{1}{25} \sin(5\omega t) + \cdots)$$

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

## Histogram Testing with Sinusoidal Signal

- The probability density of sinusoidal signal
  - A<sub>sin</sub> is the amplitude of sine wave, V<sub>a</sub> and V<sub>b</sub> are any voltage in the interval of (-A<sub>sin</sub>, A<sub>sin</sub>)

• 
$$P(V_a, V_b) = \frac{1}{\pi} \{ \sin^{-1}[\frac{V_b}{A_{\sin}}] - \sin^{-1}[\frac{V_a}{A_{\sin}}] \}, \text{ which } V_b > V_a \cdots eq.(1) \text{ Probability density of sinewave} \}$$

• Assume  $V_b - V_a = 1LSB$  ,converting continuous probability  $P(V_a, V_b)$  to discrete probability P(i)

$$\Rightarrow P(i) = \frac{1}{\pi} \{ sin^{-1} [\frac{V_{LSB} \cdot (i-2^{N-1})}{A_{sin}}] - sin^{-1} [\frac{V_{LSB} \cdot (i-1-2^{N-1})}{A_{sin}}] \} \cdots eq.(2)$$

- Let h(i) be the histogram result of n-th output code  $h(i)/P_{ideal}(i) = 1 \cdots eq.(3)$   $N_t$ : number of sample points  $P_{ideal}(i)$ : PDF of ideal sine waveinput
  - However, this formula is unfeasible to get DNL because A<sub>sin</sub> must be known with great precision
  - To overcome this problem, different methods are proposed by different companies

# A<sub>sin</sub> Fitting Methods

- Method-1 from Maxim[11]
  - We can't get real amplitude information A<sub>in</sub> and only know the estimated amplitude information A<sub>sin</sub>



# A<sub>sin</sub> Fitting Methods (Cont.)

- Method-2 from ADI[10]
  - Procedure of DNL calculation
    - > A<sub>sin</sub> should be estimated to  $\frac{v_{FS}}{\sin\left(\frac{N_t}{N_t + h(0) + h(2^N 1)} \cdot \frac{\pi}{2}\right)} \cdots eq.(4)$

which  $V_{FS} \approx$  full-scale voltage

> Estimated value of  $A_{sin}$  from eq.(4) is used in eq.(2)

$$\Rightarrow h(i)_{theoretical} = p(i) \cdot N_t$$

- > DNL could be calculated by eq.(3)  $\Rightarrow$  DNL(i) =  $\frac{h(i)_{measured}}{h(i)_{theoretical}} 1$
- MATLAB verification

| f <sub>s</sub> =80MHz                                                              | A <sub>in</sub>    | A <sub>sin</sub>        |
|------------------------------------------------------------------------------------|--------------------|-------------------------|
| f <sub>in</sub> =9.82MHz<br>N <sub>t</sub> =2 <sup>14</sup> ; V <sub>ref</sub> =2V | 2 V <sub>p-p</sub> | 2.0158 V <sub>p-p</sub> |
|                                                                                    | 3 V <sub>p-p</sub> | 3.0238 V <sub>p-p</sub> |

| Advantage                                                  | A <sub>sin</sub> is estimated directly |  |
|------------------------------------------------------------|----------------------------------------|--|
| <b>Disadvantage</b> Not accurate enough in high-resolution |                                        |  |

# Summary of A<sub>sin</sub> Fitting Methods

- In method-1: iteration times  $\propto$  accuracy
- In method-2: accuracy of DNL information is not good enough in highresolution ADC
- Except A<sub>sin</sub> fitting methods, we could get accurate DNL information quickly by abandoning <u>both ends codes</u>\* information based on [1]
  - To get DNL information, recovering the real transition level from normalized transition level would be used
  - The details of this method will be introduced in the next pages
- \* Both ends codes is acquired from the measured codes

#### Normalization of Transitions

Before normalizing, P(i) is replaced with  $\frac{h(i)}{N_i}$  in eq.(2) to calculate threshold voltage, V(i)

$$P(i) = \frac{1}{\pi} \{ \sin^{-1} \left[ \frac{V_{LSB} \cdot (i - 2^{N-1})}{A_{\sin}} \right] - \sin^{-1} \left[ \frac{V_{LSB} \cdot (i - 1 - 2^{N-1})}{A_{\sin}} \right] \}$$
  

$$\Rightarrow \frac{h(i)}{N_t} = \frac{1}{\pi} \{ \sin^{-1} \left[ \frac{V(i)}{A_{\sin}} \right] - \sin^{-1} \left[ \frac{V(i - 1)}{A_{\sin}} \right] \}$$
  

$$\Rightarrow V(i) = V(i - 1) \cos\left(\frac{\pi \cdot h(i)}{N_t}\right) + \sin\left(\frac{\pi \cdot h(i)}{N_t}\right) \sqrt{A_{\sin}^2 - V^2(i - 1)}$$

Set boundary condition V(0)=-A<sub>sin</sub>  

$$\Rightarrow V(i) = -A_{sin} \cos(\frac{\pi \cdot \sum h(i)}{N_t})$$

- V(i) can be normalized to  $A_{sin}$   $\Rightarrow V(i) = -\cos(\frac{\pi \sum h(i)}{N_i})$  The full range of transitions is (-1,+1)

  - Before recovering the real transition, some assumptions about initial condition are necessary

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

#### **Consideration of Offset Voltage**

- Offset could be calculated by histogram
  - If V<sub>offset</sub>=0V, the number of codes above zero (N<sub>p</sub>) equals the number of codes below zero (N<sub>n</sub>)
  - ◆ Let p<sub>p</sub> be the probability of positive sampled voltage which in the range of (0,A<sub>sin</sub>+V<sub>offset</sub>), and p<sub>n</sub> is the probability of negative sampled voltage which in the range of (-A<sub>sin</sub>+V<sub>offset</sub>,0)

$$\Rightarrow V_{offset} = A_{sin} \sin\left(\frac{\pi}{2} \cdot (p_p - p_n)\right) = A_{sin} \sin\left(\frac{\pi}{2} \cdot (\frac{N_p - N_n}{N_t})\right)$$

• Correction of transitions with offset error

## Illustration of Relationship between Threshold

#### Voltage and Output Code

- Presentation of threshold voltage V(i) with a 4-bit example
  - $V(i) = -\cos(\frac{\pi h(i)}{N})$
  - Input-output transfer curve





Definition of LVL<sub>n</sub> and LVL<sub>p</sub>
 LVL<sub>n</sub>: the output level with max. h(i) value in negative voltage
 LVL<sub>p</sub>: the output level with max. h(i)

value in positive voltage

## The Influence of Input Amplitude to Histogram

- There are three kinds of conditions under test
  - $V_{peak}$  is equals to V(LVL<sub>p</sub>)



•  $V_{peak}$  is slightly smaller than  $V(LVL_p)$ 



## The Influence of Input Amplitude to Histogram (Cont.)



 $V(LVL_p-1)$  in order to recover the correct transitions

- DNL of unused codes are set to zero
  - $DNL(0)=DNL(1)=\cdots=DNL(LVL_n)=0$
  - $DNL(LVL_p)=DNL(LVL_p+1)=\cdots=DNL(2^{bit}-1)=0$

#### Calculation of DNL and INL

- Recovery of the real transitions from normalized transitions
  - ◆ Find the LVL<sub>n</sub> and LVL<sub>p</sub>
  - Create the transitions normalized to A<sub>sin</sub>

$$V(i) = -\cos\left(\frac{\pi \cdot \sum h(i)}{N_t}\right) + V_{offset} = -\cos\left(\frac{\pi \cdot \sum h(i)}{N_t}\right) + \sin\left(\frac{\pi}{2} \cdot \left(\frac{N_p - N_n}{N_t}\right)\right)$$

Recover the normalized transitions to real voltage

$$V_{real}(i) = \frac{\text{Difference between V(LVL_p-1) and V(LVL_n) for real transitions}}{\text{Difference between V(LVL_p-1) and V(LVL_n) for normalized transitions}} \cdot V(i)$$
$$= \frac{(LVL_p - LVL_h - 2) \cdot V_{LSB}}{V(LVL_p - 1) - V(LVL_h)} \cdot V(i)$$

→ The transitions from  $V(LVL_n)$  to  $V(LVL_p-1)$  are recovered



## Calculation of DNL and INL (Cont.)

• DNL and INL can be calculated with recovered transitions

•  $DNL(i) = V_{real}(i) - V_{real}(i-1)$ , which  $i = (LVL_{h} + 1) \sim (LVL_{p} - 1)$ 

Based on previous assumption, DNL of unused code are set to zero

> 
$$DNL(0)=DNL(1)=...=DNL(LVL_n)=0$$

>  $DNL(LVL_p)=DNL(LVL_p+1)=...=DNL(2^{bit}-1)=0$ 

• 
$$INL(i) = \sum_{k=0}^{i} DNL(k)$$
, which  $i = 0 \sim (2^{bit} - 1)$ 

## Verification of MATLAB Code for Static Testing

Artificial non-ideal ADC with given DNL

◆ Set DNL(500)=0.8, DNL(501)=-0.8, DNL(230)=0.4, DNL(231)=-0.4





Comparison between different conditions

|                      | DNL(500) | DNL(501) | DNL(230) | DNL(231) |
|----------------------|----------|----------|----------|----------|
| All DNL(i)=0         | 0        | 0        | 0        | 0        |
| Verification results | 0.04     | 0.04     | -0.051   | -0.049   |
| Given DNL(i)         | 0.8      | -0.8     | 0.4      | -0.4     |
| Verification results | 0.905    | -0.83    | 0.3557   | -0.457   |

This method is verified in the artificial ADC

#### **Aperture Uncertainty Measurement**

- Locked histogram testing [13]
  - Set f<sub>in</sub> equals to f<sub>s</sub>



Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

## Limitation of Number of Sampling Points

Number of sample points (N<sub>t</sub>)

•  $N_t \ge \frac{Z_{\alpha/2}^2 \cdot \pi \cdot 2^{N-1}}{\beta^2}$  [N: Number of bit  $\beta$ : DNL resolution in LSB  $Z_{\alpha/2}$ : Number of standard deviations from the mean values

- Calculated DNL lies in range  $(\mu Z_{\alpha/2} \cdot \sigma, \mu + Z_{\alpha/2} \cdot \sigma)$  with 100(1- $\alpha$ ) percent probability, where  $\mu$  is excepted value,  $\sigma$  is standard deviation and  $\alpha$  is chosen desired confidence level
- Standard normal distribution table for the given α

| α    | Confidence(1-a) | $Z_{\alpha/2}$ |
|------|-----------------|----------------|
| 0.1  | 90%             | 1.64           |
| 0.05 | 95%             | 1.96           |
| 0.02 | 98%             | 2.33           |
| 0.01 | 99%             | 2.58           |

◆ Example of a <u>10</u>-bit ADC with <u>0.01LSB</u> precision and <u>99%</u> confidence  $N_{t} \geq \frac{2.58^{2} \cdot \pi \cdot 2^{10-1}}{0.01^{2}} = 107067890 \approx 2^{26}$ 

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

## <u>Outline</u>

- Introduction of ADC
- Static testing
- Dynamic testing
  - Coherent sampling
  - Introduction of window function
  - Performance metrics of dynamic testing
  - ENOB Calculation
- Measurement example
- Reference

## Coherent Sampling

Relationship between input frequency, sample frequency, number of cycles and number of samples

 $\Rightarrow \frac{f_{in}}{f_s} = \frac{N_{cycles}}{M_{samples}} - \begin{cases} f_{in} : input frequency, N_{cycles} : number of cycles \\ f_s : sample frequency , M_{samples} : number of samples \end{cases}$ 

- Non-coherent sampling
  - $> N_{cvcles}$  is non-integral
    - $\circ$  In frequency domain  $\rightarrow$  leakage effect
    - $\circ$  In time domain  $\rightarrow$  discontinuity  $\checkmark$
  - $> N_{cvcles}$  is integral but  $N_{cvcles}$  and  $M_{samples}$  are not co-prime Discontinuity elimination
    - Periodicity of quantization error
- Coherent sampling
  - N<sub>cvcles</sub> is prime number
    - Quantization error is not periodic
- Another method of solving discontinuity is applying window



800

900

If N=1027

1100

#### Introduction of Window Function



#### Performance Metrics of Dynamic Testing

SNR(Signal-to-Noise Ratio)

$$SNR = 10 \cdot \log_{10}(\frac{P_{signal}}{P_{noise}})$$

SNDR(Signal-to-Noise and Distortion Ratio)

$$SNDR = 10 \cdot \log_{10}(\frac{P_{signal}}{P_{noise} + P_{distrotion}})$$

Total Harmonic Distortion + Noise

$$THD + N = (\frac{P_{noise} + P_{distrotion}}{P_{signal}}) \times 100\%$$

• Spurious-Free Dynamic Range

$$SFDR = 10 \cdot \log_{10}(\frac{P_{signal}}{P_{max-tone}})$$



#### **ENOB** Calculation

- Two methods for ENOB calculation
  - ◆ Sine wave curve fitting [10], [12]
    - Measured data are acquired by logic analyzer and processed by



> Fit the measured data with the sine wave  $A_0 sin(2\pi f_{in}t+\Phi_0)+V_{os}$ 



Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

### ENOB Calculation(Cont.)

◆ Relationship between SNDR and ENOB [1]

> With full-scale input  

$$ENOB = \frac{SNDR - 1.76}{6.02} (bit)$$
> Without full-scale input  

$$ENOB = \frac{SNDR - 1.76 + \Delta x}{6.02} (bit)$$

$$\Delta x \approx Level of signal below full - scale(dB)$$

## <u>Outline</u>

- Introduction of ADC
- Static testing
- Dynamic testing
- Measurement example
  - Setup of ADC measurement
  - Static testing
    - > Relationship between DNL and number of sample points
    - Mismatch between A<sub>in</sub> and A<sub>sin</sub>
    - Comparison of static performance
- Reference

#### ADC Measurement Setup

#### • ADC measurement setup



- \*Filter
  - Low pass filter:TTE-LC7-10M-LPF
  - Band pass filter: K&L-5M-BPF

#### Relationship between DNL and Number of Sample Point

- 16-bit ADC with  $f_{clock}$ =80MHz,  $A_{clock}$ =1.5V<sub>p-p</sub>,  $f_{in}$ =9.41MHz,  $A_{in}$ =3.03V<sub>p-p</sub>
  - Assume DNL lie in range  $(\mu Z_{\alpha/2}\sigma, \mu + Z_{\alpha/2}\sigma)$  with 95% probability

DNL resolution, 
$$\beta \ge \sqrt{\frac{Z_{\alpha/2}^{2} \cdot \pi \cdot 2^{N-1}}{N_{t}}}$$

- The limitation of logic analyzer
  - > The max. number of output data is 2<sup>20</sup>
  - > To get larger  $N_t$ , output data should be exported for many times



#### → Higher N<sub>t</sub> would get more accuracy of static testing

#### Mismatch between A<sub>in</sub> and A<sub>sin</sub>

A<sub>in</sub>: actual signal amplitude generated from signal generator  $A_{sin}$ : estimated amplitude for theoretical value in eq.(2) Using  $V_i = -A_{sin} \cdot \cos(\frac{\pi \sum h(i)}{N_i})$  to calculate DNL and INL  $A_{clock}=1.65V_{p-p}$ ,  $f_{clock}=80MHz$ ,  $A_{sin}=1.50743V$ ,  $f_{in}=5MHz$ , using K&L-5M-BPF •  $A_{sin}$  matches to  $A_{in} \Rightarrow A_{in} \approx A_{sin} = 1.50743 \text{ V}$ DNL+= 0.847 LSB taka alamanin di basha bilan da di ang kata ka 0.5 DNL IN  $DNL^{-} = -0.551 LSB$ -2 -0.5 -4 INL(2<sup>16</sup>-1)=0.09 LSB -1 -6 0 2 6 0 2 4 6 Output code  $x 10^4$ Output code  $x 10^4$  $A_{sin}$  mismatches to  $A_{in} \Rightarrow$  $A_{in}$ =1.497V  $\neq A_{sin}$ 600 DNL+= 0.756 LSB 0.5 400  $DNL^{-} = -0.504 LSB$ ľ DNL 200 INL(2<sup>16</sup>-1)=407 LSB -0.5 -1 2 4 6 0 0 2 Output code  $x 10^4$ Output code  $\times 10^4$ So  $A_{sin}$  must be equal to  $A_{in}$ Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 郭泰豪, Analog IC Design, 2023 13-36

#### Mismatch between A<sub>in</sub> and A<sub>sin</sub> (Cont.)

Using the method of calculating DNL and INL from P18~P19
 A<sub>clock</sub>=1.65V<sub>p-p</sub>, f<sub>clock</sub>=80MHz,A<sub>sin</sub>=1.50743V, f<sub>in</sub>=5MHz,using K&L-5M-BPF
 A<sub>sin</sub> matches to A<sub>in</sub> ⇒ A<sub>in</sub>≈A<sub>sin</sub>=1.507425 V



 $\rightarrow$  Adopting this method,  $A_{sin}$  mustn't be equal to  $A_{in}$ 

2

Output code

0

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Output code

6

 $\times 10^4$ 

2

-1 -0

 $\times 10^4$ 

#### **Comparison of Static Performance**

Measured data

$$\label{eq:conditions} \begin{split} \text{Conditions} \begin{bmatrix} A_{clock} = 1.65 V_{p\text{-}p}, \ f_{clock=} 80 \text{MHz}, \ A_{in} = 3.03 V_{p\text{-}p}, \ f_{in} = 5 \text{MHz} \\ \text{using 5M-BPF}, \ N_t = 2^{24} \end{split}$$



Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

## <u>Outline</u>

- Introduction of ADC
- Static testing
- Dynamic testing
- Measurement example
- Reference

#### Reference

- [1] Doernberg, H. S. Lee, D. A. Hodges, "Full-Speed testing of A/D converters," *IEEE J. Solid State Circuits*, vol. SC-19, pp820-827, Dec.1984
- [2] Walt Kester, *Analog-Digital Conversion*. Analog Devices, 2004, pp5.38pp5.45
- [3] F. Wagdy and S. S. Awad, "Determining ADC effective number of bits via histogram testing," *IEEE Trans. Instrument Meas.*, vol.40, no. 4,pp. 770pp. 772, Aug. 1986
- [4] E. Linnenbrink, "Effective Bits : Is that all there is?," *IEEE Trans. Instrument Meas.*, vol. IM-33 , no. 3 ,pp. 184-187, Sep 1984.
- [5] MAX, "Fast accurate and complete ADC testing," *International Test Conference*, pp. 111-117, 1989
- [6] Jenq, P. B. Crosby, "Sinewave parameter estimation algorithm with application to waveform digitizer effective bits measurement," *IEEE Trans. Instrum. Meas.*, vol. 37, no. 4, pp.529-532, Dec. 1988
- [7] "IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters," *IEEE Std* 1241-2000,p.3

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

#### Reference

- [8] Maxim Integrated, tutorial 748(2002, Jul 22). *The ABCs of ADCs: Understanding How ADC Errors Affect System Performance*[9] *Analog-Digital Conversion,* Walt Kester, Analog Devices, Inc., 2005, pp. 5.27-5.50
- [10] Analog Device, tutorial MT-010(2009). The Importance of Data Converter Static Specifications—Don't Lose Sight of the Basics!
- [11] Maxim Integrated, tutorial 2085(2003, Jun 18). *Histogram Testing Determines DNL and INL Errors* [Online]. Available:

http://www.maximintegrated.com/app-notes/index.mvp/id/2085

- [12] "Dynamic Performance Testing of A to D Converters," Product Note 5180A-2., Hewlett Packard.
- [13] G. Chiorboli, "Sub-Picosecond Aperture-Uncertainty Measurement," *IEEE Trans. Instrum. Meas.*, vol.51, pp. 1039-1044, Oct. 2002